

 $\underset{\mathsf{CuNi}_{7}\mathsf{Si}_{2}\mathsf{Cr}}{\mathsf{NS30}}$

NS30 is a nickel-silicon-bronze (CuNi₇Si₂Cr) alloy designed for applications requiring a combination of high thermal dissipation and high strength. NS30 is non-sparking and resistant to corrosion.

MATERIAL DESIGNATION

ISO	UNS	Other designations	Aerospace specifications	Other standards
CuNi7Si2Cr	NA	NA	NA	NA

CHEMICAL COMPOSITION (WEIGHT%)

Cu	Ni	Si	Cr
Balance	7%	2%	1%

PHYSICAL PROPERTIES

General properties					
Density at 20 °C (68 °F)	8.7 g/cm ³	0.31 lb/in ³			
Thermal conductivity	135 W/m.°C	78 BTU/(h.ft.°F)			
Coefficient of thermal expansion from 20 to 300 °C (68 °C to 572 °F)	16 x 10 ⁻⁶ /°C	8.89 µin/in °F			
Young's modulus	130 GPa	18 855 ksi			
Relative magnetic permeability	Relative magnetic permeability 1.01				
Electrical properties					
Resistivity at 20 °C (68 °F)	5.7 μΩ.cm	34.3 Ω. circ mil/ft			
Electrical conductivity	30 %IACS				

TYPICAL APPLICATIONS

Automotive industry

Fuel and CO₂ efficient touring cars, valve seats, valve guides, liners. Bearings and bushings valvetrain components for racing cars

Plastic industry

Mold inserts for injection molding, injection and extrusion blow molding. Injection components (manifolds) for hot runner systems

Other applications

Welding shanks and wheels. High pressure die casting plunger tips/pistons

COMPATIBLE DOWNSTREAM PROCESS

Extrusion, forging or die stamping followed by quenching and hardening, plus cold-drawing for small diameters

Suitable for hard brazing, but loss of mechanical properties

KEY FEATURES

Dimensional stability

High thermal conductivity
High strength
Excellent wear & galling resistance
Good corrosion resistance
Fair machinability
Non-sparking
Good impact & fatigue resistance
Low magnetic permeability
Stable performance at elevated temperatures up to 350 °C (662 °F)

MECHANICAL PROPERTIES

Size diameter Ø	Temper*	Yield Strength 0.2% MPa (ksi)	Tensile Strength MPa (ksi)	Elongation (%)	Hardness		
or thickness a					(HB)	(HRC)	
	For other dimension	ons and shapes, mech	nanical properties on	demand			
Bars							
$\emptyset \le 50.8 \text{ mm}$ $(\emptyset \le 2 \text{ in.})$	TER	≥ 800 (≥ 116)	≥ 900 (≥ 131)	≥ 7	≥ 270	≥ 26	
50.8 < Ø ≤ 127 mm (1.97 < Ø ≤ 5 in.)	TR	≥ 700 (≥ 102)	≥ 800 (≥ 116)	≥ 5	≥ 250	≥ 25	
		Hollow bar	rs				
OD > 101.6 mm (OD > 4 in.) Thickness: 10-25.4 mm (0.4 to 1 in.)	TR	≥ 700 (≥ 102)	≥ 800 (≥ 116)	≥ 5	≥ 250	≥ 25	
Plates							
a ≤ 50.8 mm (a ≤ 2 in.)	TR	≥ 700 (≥ 102)	≥ 800 (≥ 116)	≥ 5	≥ 250	≥ 25	

^{*}TER: solution annealed and quenched, cold worked and aged. TR: solution annealed, quenched and aged

OTHER AVAILABLE FORMS

lebronze alloys

Billets, strips, sheets, rods, wires, standard & complex profiles, machined blanks and parts

Disclaimer: Data for information only, non-contractual / Dimensions outside these ranges on request